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Abstract
We discuss a remarkable property of an iterative algorithm for eigenvalue
problems recently advanced by Waxman that constitutes a clear advantage over
other iterative procedures. In quantum mechanics, as well as in other fields,
it is often necessary to deal with operators exhibiting both a continuum and a
discrete spectrum. For this kind of operator, the problem of identifying spurious
eigenpairs which appear in iterative algorithms like the Lanczos algorithm does
not occur in the algorithm proposed by Waxman.

PACS numbers: 03.65.Ge, 02.60.Lj

The Hamiltonian operator which describes a quantum mechanical system generally possesses
both a continuum and a discrete spectrum. A similar situation also occurs in other fields, such
as theoretical population genetics [1]. In many cases, one is only interested in a few of the lower
lying bound states of the system. When only bound states are present, iterative algorithms such
as the Lanczos algorithm [2] yield good approximations to the lower lying eigenstates with
good convergence properties [3–6]. On the other hand, the presence of the continuum leads to
complications which can be circumvented but not without introducing spurious eigensolutions
that need to be identified and eliminated [7]. Such spurious eigensolutions, however, do not
occur in an algorithm recently proposed by Waxman [8]. We compare the two algorithms and
demonstrate this behaviour in a simple numerical example.

The presence of the continuum leads to complications in the Lanczos algorithm [2].
Finding a suitable start vector is by no means trivial [9], since the Lanczos algorithm can only
be applied to states which are normalizable in the L2 sense. For those operators which possess
a continuum as well as a point spectrum, the space spanned by the bound state eigenfunctions
is by itself certainly not complete and a suitable start vector should be composed only of
components in the subspace spanned by the bound state eigenvectors. Usually, the start vector
is chosen from a complete set of analytic L2 functions which define a space F . This space
is in most cases not necessarily of the same dimension as the subspace spanned by the exact
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eigenvectors. On the other hand, if the Lanczos algorithm is applied with this choice for
the start vector, the eigenpairs obtained will correspond to those of the operator Ĥ projected
ontoF . A subset of these eigenstates must correspond to the exact eigenpairs of the unprojected
Hamiltonian operator since the exact eigenstates can be expanded in terms of the complete
set of states which span F . The exact bound states can be identified and separated from
the spurious bound states in the following manner [7]. After each iteration, for each of the
converging eigenpairs (elβ , |elβ〉), �lβ = ∣∣e2

lβ − 〈elβ |Ĥ 2|elβ〉∣∣ (where l is the iteration number)
is calculated and a determination is made as to whether � is converging towards zero or not.
For the exact bound states of Ĥ , � must be identically zero while the other spurious eigenstates
of the projected operator should converge to some non-zero positive value. Provided sufficient
iterations are performed, it is possible, in this manner, to identify uniquely the approximate
eigenpairs which ultimately will converge to the exact bound states.

In the present letter, we wish to point out that this difficulty is avoided in a recently
proposed iterative algorithm for determining the bound state eigenpairs of linear differential
operators such as the Schrödinger Hamiltonian [8]. This algorithm has many advantages
not the least of which is its simplicity and an excellent convergence rate. The eigenpairs are
determined as functions of the strength of the potential in the following manner. For simplicity,
consider a one-dimensional eigenvalue equation [8][−∂2

x − λV (x)
]
u(x) = −εu(x), (1)

lim
|x|−>∞

u(x) = 0, (2)

where ∂x = ∂
∂x

; λ > 0 is the strength parameter of the attractive potential (λV (x) > 0
and V (x) → 0 as |x| → ∞) and the energy eigenvalue, −ε (with ε > 0), is negative and
corresponds to a bound state. Using Green’s method, a solution to equation (1) is given by

u(x) = λ

∫ ∞

−∞
Gε(x − x ′)V (x ′)u(x ′) dx ′, (3)

where the Green’s function Gε(x) satisfies[−∂2
x + ε

]
Gε(x) = δ(x), (4)

lim
|x|−>∞

Gε(x) = 0. (5)

Normalizing u(x) at an arbitrary xref ,

u(xref) = 1, (6)

allows λ to be written as (see equation (3))

λ = 1∫
Gε(xref − x ′)V (x ′)u(x ′) dx ′ , (7)

which can then be used to eliminate λ from equation (3)

u(x) =
∫ ∞
−∞ Gε(x − x ′)V (x ′)u(x ′) dx ′∫
Gε(xref − x ′)V (x ′)u(x ′) dx ′ . (8)

Using equations (7) and (8), λ can be determined as a function of ε in the following manner.
For a particular choice of ε, equation (8) can be iterated

un+1(x) =
∫ ∞
−∞ Gε(x − x ′)V (x ′)un(x

′) dx ′∫
Gε(xref − x ′)V (x ′)un(x ′) dx ′ , (9)

until it converges and λ can then be determined from equation (7). Repeating for different
values of ε yields a set of different values of the potential strength λ. When enough points
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have been determined, a simple interpolation procedure yields the dependence of ε on λ.
Note that no diagonalization is required. In spite of the necessity of interpolating, the rapid
convergence of the numerical solution of equation (9) makes the present algorithm extremely
viable. Furthermore, a proof of convergence has been given and the algorithm can be extended
for the calculation of excited states [8].

In order to demonstrate that spurious solutions do not occur in the aforementioned
algorithm, we have performed the following simple calculation. An inverse Gaussian potential

V (x) = exp

(−x2

2

)

with half-width of 2
√

(2ln(2)) has been constructed which does not support any excited bound
states. The Lanczos algorithm has been used to determine the eigenstates of the corresponding
Hamiltonian operator in one dimension using

φ1(x) = 〈x|1〉 =
(

2

π

)1/4

e−x2

as the normalized start vector. After 18 iterations, the Lanczos algorithm yielded the ground
state at e18 1 = −0.475 917 plus a spurious state at e18 2 = 0.529 612. In the case of the ground
state, �18 1 = 0.021 8906 while �18 2 = 2.096 73 clearly indicating that the excited state is
spurious. The Waxman algorithm, using xref = 0 for the determination of the interpolating
function ε(λ), yielded the ground state at energy = − 0.479 203. Here the aforementioned
iterations were repeated until λ = 1 yielded a value to within 10−3. When the Waxman
algorithm was used to find the first excited state, it did not yield a solution for λ = 1. Hence,
no spurious solutions were obtained with the algorithm. Only for λ � 1.353 48 did the
Gaussian potential support at least one excited bound state .

The spurious states arise in the case of the Lanczos algorithm because the resulting matrix
representation of the Hamiltonian operator in the Lanczos basis corresponds to projecting it
onto the space F . The diagonalization of the resulting projected operator yields spurious
eigenpairs. In the Waxman algorithm, iterations in each step are performed with the
Hamiltonian operator and no projection or diagonalization is required. Hence, ultimately
only the exact bound states are obtained and there are no problems with spurious states.
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